Surimi Technology and New Techniques Used For Surimi-Based Products

Büket Buşra DAĞTEKİN¹,*

¹Central Fisheries Research Institute, Department of Food Technology, 61250, Trabzon/ Türkiye

How to cite

Article History
Received 23 May 2022
Accepted 26 July 2022
First Online 27 July 2022

Corresponding Author
Tel.: +904623411053
E-mail: buketgozu@gmail.com

Abstract
With growing population is in the world, food requirement of people is also increasing. Therefore, increasing of the current animal protein sources or presenting to human consumption for using different methods is of great importance. Surimi is an excellent source of myofibrillar proteins, which are preserved by cryoprotectants during long-term frozen storage. Surimi is a product obtained by mixing mechanically deboned fish meat, after washing with water and chopping, mixing thickeners such as sugar, sorbitol and polyphosphate (cryoprotectant) and preservatives from freezing denaturation, and is defined as the moist frozen concentrate of myofibrillar protein in fish meat. Surimi goods with unusual gelling capabilities and high nutritional value include fish balls, kamaboko, chikuwa, and crabstick etc. Surimi is also classified as a ready-to-eat food because it does not require any preparation before eating. Nowadays, with the increase in consumer demand for ready-to-eat foods, the concern for surimi-based products has also increased. However, long-term heat processing using in production of them, which produces a certain amount of protein breakdown, decreasing textural quality and failing to fulfil customer expectations. Texture is a significant factor in influencing the quality and acceptance of seafood and fish protein-based products. Recently, non-thermal techniques such as high-pressure processing, ultrasonication, microwave, ultraviolet, ohmic heating, is used to minimise the quality loss caused by high-temperature cooking in production surimi based products.

Introduction
In parallel with the rapid increase in the population in the world, the need for animal food is increasing. Some animal protein sources are not directly preferred by the consumer because of their appearance and taste. For this reason, it is of great importance to increase the existing animal protein sources or to offer them to human consumption by applying different methods. In recent years, scientific studies have investigated ways to benefit more from marine resources, especially fish, in solving nutritional problems (Kristinsson et al., 2003; Hsu, 2010; Chalamaiah et al., 2012; Aspevik, 2016).

Surimi is a Japanese term obtained by mixing mechanically deboned fish meat, after washing with water and chopping, mixing thickeners such as sugar, sorbitol and polyphosphate (cryoprotectant) and preservatives from freezing denaturation, and is defined as the moist frozen concentrate of myofibrillar protein in fish meat. “Crude surimi” is obtained by removing the oil and water-soluble compounds by washing the minced meat with water. Various additives (such as sugar, sorbitol and some phosphates) that prevent the denaturation of fish proteins and are called cryoprotectants are mixed with surimi, allowing the proteins to be frozen for a longer period of time without losing their functional properties (Turan et al., 2006; Kaba, 2009; Kong et al. 2016; Muriel-Galet et al. 2015; Moreno et al., 2016; Chen et al. 2019; Mi et al. 2021). Fish balls, fish sausage, kamaboko, chikuwa, and
Crabsticks are examples of surimi based products which are popular in China, Korea, Japan, Thailand and other Asia countries known for their distinctive gelling qualities and excellent nutritional value. Surimi is also regarded as a ready-to-eat cuisine because it doesn’t require any preparation before eating (Campo and Tovar, 2008; Grete et al. 2010; Zhang et al. 2013; Yin and Park, 2015; Kong et al. 2016; Kobayashi et. al., 2017; Lin et al., 2019).

Dating back to the 19th century, surimi making was previously thought to be a method used to preserve the caught fish without becoming stale. The successful use of non-economic and less economical species as raw materials in the Far East, America and European countries, frozen surimi has a long shelf life and a very high functional protein content, various technological processes and, with the addition of additives has been developed production of surimi and surimi-based products (Çalkı and Duyar, 2001; Buyruk, 2005; Turan et al., 2006). Recently years, surimi and surimi-based products have increased in worldwide due to their higher nutritional values and harvesting about 4.79 million tons in 2018 (Fishery and Statistics, 2020). The aim of this paper is to describe the surimi production process and give information about new techniques used for surimi-based products.

Production of Surimi

Although surimi and surimi-based products have been produced and consumed in Japan for centuries, the production and consumption of surimi-based products has started recently in European and American countries. In Europe, they are produced intensively in the Netherlands, France, Italy and Belgium (Çalkı and Duyar, 2001).

For the preparation of surimi, choosing the proper and quality raw materials is crucial. A percentage of myofibrillar proteins should be about 70% in the chosen fish. When percentage of water-soluble proteins is more than this rate, this situation is caused to be less surimi yield (Bakli et al., 2020). The other criteria to consider when choosing fish species for surimi are; ability to form a solid gel structure; having a good organoleptic quality in terms of taste, odour, and appearance; having white meat; availability all year long and having an appropriate price (Altun and Yildiz, 2018).

Surimi production from lean (white meat) fish consists of mincing, filtration (washing) and stabilization stages (Figure 1). Following the mincing process, the minced meat is washed with water. With the washing process, water-soluble compounds, fat and blood are removed from the minced meat and the color and flavor quality of surimi and its gel formation ability are increased. The number of filtration cycles varies according to the type and freshness of the fish. Studies for washing show that 9-12 shakes are sufficient. For example, in two filtration cycles, 5 minutes (min) per agitation is sufficient. The moisture content of the minced meat is reduced to approximately 80-84% with the clarifier and screw press dryer. Additives called cryoprotectants such as sugar, sorbitol and polyphosphate are added to the obtained raw surimi. Generally, 4% sugar, 4-5% sorbitol and 0.2-0.3% polyphosphate are used (Hall and Ahmad, 1992). In addition, sodium tripolyphosphate, tetrasodium prophosphate, calcium compounds (calcium lactate, calcium sulfate, calcium citrate, calcium caseinate), sodium bicarbonate, monoglyceride or diglyceride are also widely used cryoprotectants (Park and Morrissey, 2000). After the additives are added, the surimi is packed in 10 kg polyethylene bags and frozen in blocks at -40°C by contact freezing method. Frozen surimi blocks are placed as two blocks in each cardboard box and stored at −25°C (Çalkı and Duyar, 2001; Turan et al., 2006).

Figure 1. Surimi production process
With production of surimi from fatty (red meat) fish the only difference between surimi production method used for lean fish is the filtration (washing) stage. The filtration cycle takes place in three stages. Cycle 1: Filtration of meat four times in 0.5% sodium bicarbonate (NaHCO₃) solution for 20 min. Cycle 2: Filtration for 15 minutes in chilled water four times the meat. 3. Cycle: Filtration for 10 minutes in twice the meat’s 0.3% salt (NaCl) solution (Turan et al., 2006; Çakılı and Duyar, 2001).

Fish Species Using For Surimi

In the production for surimi can utilise both marine and freshwater fish species. Both the light and dark fish muscles play a significant role in the production of surimi, the light muscles are more crucial for high-quality surimi due to their more stable proteins, reduced lipid oxidation, and reduced strain fluctuations. Surimi made from dark muscles, on the other hand, has a lower quality due to a larger concentration of heme proteins, lipid oxidation, proteolytic activity, and decreased protein stability (Park, 2005; Walat et al., 2022).

Numerous studies have been done to find alternative raw materials for making surimi besides the typical Alaska pollack. Several species including bigeye snapper (Park, 2005; Benjakul et al., 2004a), pacific whiting, arrowtooth flounder (Park, 2005; Uresti et al., 2006), threadfin bream (Bourtoum et al., 2009; Park et al., 2012; Nopianti et al., 2012), cod (Vareltsiz et al., 1989; Fernandez et al., 2001; Kristinsson and Hultin, 2003), lizard fish (Park, 2012; Benjakul et al., 2004b), hake (Fernandez et al., 2001), croaker (Benjakul et al., 2004b), mackerel (Eymard et al., 2005; Chaijan et al., 2006; Balange and Benjakul, 2009; Chaijan et al., 2010), sardine (Bentis et al., 2005; Chaijan et al., 2006), threadfin bream, ribbonfish, lizardfish (Muraleedharan and Gopakumar, 1998), anchovy (Kaba, 2006), thornback ray (Turan and Sönmez, 2007), and hoki (Mohtar et al., 2010) have been identified as potential raw materials. The quality of surimi made from each species of fish relies on elements such as seasonal change, eating behaviour, the pH of the water in the environment, adaptability, temperature, lipid content, sex, and spawning (Bakli et al., 2020).

However, there is a shortage of raw materials for the manufacture of surimi due to the ongoing decline in marine harvest. The recent decline in conventional surimi resources and the recent growth of the aquaculture industry globally create the possibility that freshwater fish will one day be a desirable raw material for the production of surimi (Pan et al., 2010; Bakli et al., 2020). More research has recently been done on the quality of surimi made from freshwater fish, such as silver carp (Azadian et al., 2012; Chen et al., 2020; Mi et al., 2021), tilapia (Zhou et al., 2006; Kobayashi et al., 2017), carp (Yanar and Fenercioğlu, 1999; Elyasi et al., 2010; Li et al., 2014), prussian carp (Dağtekin, 2015), grass carp (Mao and Wu, 2007).

Cryoprotectans Used in Surimi Production

Myofibrillar proteins physical, functional, and structural characteristics are effectively protected by cryoprotectants during surimi’s frozen storage. Prior to freezing, cryoprotectants are added to surimi to lessen the denaturation and aggregation of the myofibrillar proteins. Among the most researched cryoprotectants used to store surimi are sucrose, sorbitol, polydextrose, lactitol, maltodextrin, litesse, sodium lactate, trehalose, and phosphates (Nielsen et al., 1994; Nopianti et al., 2010; Alakhrash et al., 2016; Park et al., 2016; Santana et al., 2017; Singh and Benjakul, 2017; Walayat et al., 2022a). These antifreezing substances lessen viscosity, boost moisture retention, and improve protein stability when stored frozen. These cryoprotectants were picked because of their efficiency, affordability, and minimal propensity to trigger the Millard response (Kong et al., 2013).

Cryoprotectants such as sucrose and sorbitol, in general, give surimi a sweet taste and a high calorific value (Carjaval et al., 2005). As sugar and calories have become a consumer issue in recent days, many studies have been reported using other cryoprotectants with no or reduced sweetness/calorie content, such as lactitol, litesse, trehalose, sodium lactate, palatinit, polydextrose, and maltodextrin (Sultanbawa and Li-Chan, 1998; Zhou et al., 2005; Nopianti et al., 2010).

Cryoprotectants in surimi prevent forming ice crystals which caused protein denaturation, and stabilise practical and constructional properties by bonding with protein functional groups. This situation protect mince from crystal formation, mince damage, and dehumidification also preserving actomyosin structure and inhibiting protein solubility during frozen storage (Zhang et al., 2016; Jommark et al., 2017).

Other Additives Used in Surimi Production

In last years, researchers have investigated using different additives for developing the gel quality of surimi (Zhang et al., 2018; Jia et al., 2018). Food hydrocolloids such as carbohydrates, proteins, and peptides play an important role in the functional and mechanical stability of surimi gel. Several food hydrocolloids improve surimi gel matrix formation, modify liquid phase mobility and viscosity, and influence gel structural and textural properties. In this way, the functional and mechanical features of surimi and surimi gel have much better (Yang et al., 2014, Walayat et al., 2022a).

Carbohydrates like starch, gums, pectins, fibres etc. are affected the surimi gel matrix by interacting with myofibrillar proteins (Fan et al., 2017). These additives are protect surimi gel firmness and strength, the whiteness and thermal stability of the gel during high-temperature treatments, improved surimi gel’s stability, water holding capacity and textural properties during frozen storage (Uresti et al., 2003; Cardoso et al., 2007;
Surimi's gel-forming abilities are most affected by myofibrillar protein degradation. Proteins like beef plasma protein, egg white, whey protein concentrate, and protein hydrolysates or peptides are used to prevent the textural degradation, and protect physical properties of surimi gel (Xiong et al., 2000). Beef plasma proteins are used as protease inhibitor or gelling agent in surimi gel prevented the myosin degradation during gelation process, with hold multiple polypeptides property may aid in the gelation of surimi proteins (Singh and Benjakul, 2017; Walayat et al., 2022a). Egg white is often used for influence the stretch ability and elasticity on partial heat treatments in surimi-based products. In addition to this, plays an important role in the structure of surimi gel by filling the interstitial spaces in protein network (Hunt et al., 2009; Quan et al., 2017). Whey protein concentrate increase shear strain, breaking force, and water holding capacity of surimi gel (Rawdkuen et al., 2008, Walayat et al., 2022a). Protein hydrolysates and peptides with higher content of hydrophilic amino acids are used an alternatives of other cryoprotectants, and prevented the water migration from proteins and reduced the formation of ice crystals and the loss of water from myofibrillar proteins. In addition to this with antioxidative properties improve inactivation of Ca2+ATPase activity and to enhance the structural stability of myofibrillar protein during frozen storage (Zhang et al., 2002; Rawdkuen et al., 2008; Kim et al., 2010; Wiriyaphan et al., 2013).

New Techniques Used For Surimi-Based Products

The quality of protein gel used in food development depends on its functional and nutritional properties. In recent decades, there has been a growing need for protein-based products among individuals due to the increasing population (Henchion et al., 2017; Walayat et al., 2022b). Consumer demand for easy and ready-to-eat products is rising as new technologies are developed a notion that encompasses both the simplicity of preparation employed and the products' prolonged shelf-life (Espinosa et al., 2015). Most ready to eat meat products require thermal processing, which adds to favourable changes in texture, colour, taste, and odour. Despite being the most advanced process, issues such delayed heat penetration, uneven heat distribution, significant cook loss, and non-uniform texture have a detrimental influence on product quality (Khan et al., 2014). Several ready-to-eat surimi items on the market, such as fish, cooked fish ham, and fish sausages, are made by long-term heat processing, which causes some protein degradation, decreasing textural quality and failing to fulfill customer demands. Texture is an essential characteristic of seafood, and innovative processing technologies, such as non-thermal processing, should be adopted to minimise the quality loss caused by high-temperature cooking (Jadhav et al., 2021; Luo et al., 2021).

Non-thermal processing exposes food to ambient temperature for a very short amount of time, i.e., 1 min or less, resulting in improved preservation of nutrients and sensory qualities and the mouthfeel remaining intact (Birmpa et al., 2013; Koubaa et al., 2016; Pizarro-Oteiza et al., 2020). Various non-thermal food processing methods, such as high-pressure processing, ultrasonication, microwave, ultraviolet, ohmic heating have emerged in recent decades. These non-thermal treatments expose food to treatment conditions for a fraction of a second, resulting in a reduction in microbial load and an improvement in shelf-life, as well as favourable sensory and textural features (Choudhary et al., 2012; Walayat et al., 2022b).

As an emerging technology, high-pressure processing (HPP) has the potential to be applied in many sectors of food processing due to its little harm to product qualities and great effectiveness in decreasing microbial burdens, making it an efficient and eco-friendly technology (Campus, 2010). Numerous studies have recently reported the use of HPP in seafood processing, with the main focus on improving raw meat shelf-life and microbial safety, modifying functional properties of proteins, and improving texture (Ma et al., 2015; Ramirez-Suarez and Morrissey, 2006; Shi et al., 2020). HPP might modify protein structure by varying to degrees of unfolding and denaturation and changed functional qualities of protein such as coagulation, aggregation, or gelation (Ma et al., 2015). HPP has the potential to improve protein functioning and quickly adjust enzyme activity. The impact of HPP on additives and the adaptability of surimi gel has received more attention than any other sophisticated food processing advancement, including ohmic heating, microwave, ultrasonication, and ultraviolet light (Yan et al., 2020). HPP also helps to retain the textural and nutritional aspects of seafood and other meat products by preventing oxidative alterations. HPP, on the other hand, avoided oxidative alterations by increase sulphydryl concentration and inhibit carbonyl production, resulting in improve textural qualities (Ma et al., 2015). Furthermore, depending on the operational environment, protein supply, protein stability rate, and gelling circumstances, HPP may have an impact on the textural qualities of surimi gel (Ekezie et al., 2017; Ekezie et al., 2018). HPP organises protein molecules significantly by blocking oxidative alterations that promote water holding capacity by creating hydrophobic interactions and hydrogen and disulfide bonds (Guo et al., 2019).

Ultrasonication is a new non-thermal technology in the food industry, although it is already a well-established method in other industries (Chemat et al., 2011). Low frequency (16-100 kHz) and high frequency (10-1000 Wcm-2) ultrasonic methods have recently been established as a quick and safe way to change protein structures, functional and physicochemical characteristics (Chemat et al., 2017). Through increasing
Ca\(^{2+}\)ATPase and sulfhydryl content, ultrasonication reduces protein oxidation (surface hydrophobicity and carbonyls) by activating hydrogen and hydrophobic interactions. As a result, gel texture and structure have become more stable (Pan et al., 2020). When compared to covalent relationships in protein gel structure, ultrasonication increases the total of electrostatic bonds and other non-covalent connections. By adding Na\(_2\)SO\(_4\) to the reaction mixture, this reduces the molecular weight and enhances the solubility rate by hydrolyzing disulfide bonds (Hu et al., 2013).

Microwaves are being used more and more in cooking, blanching, rehydration, thawing, pasteurisation, baking, roasting, tempering, and drying (Puligundla et al., 2013; Guo et al., 2017; Ekezie and Cheng, 2017). Microwave processing is becoming increasingly popular due to its strong penetration ability, which results in high heating rates, significant reductions in process time, energy efficiency, and ease of operation. Because of its strong heat transfer capabilities, microwave aided conventional gelation of surimi can improve gelation and save processing time. The mechanism of microwave heating is thought to be its beneficial effect in avoiding myofibrillar protein breakdown and assisting them to assemble, which generates additional disulfide bonding via protein interactions (Liu and Lanier, 2016). When microwave heating was used in the second phase of surimi gelation, the water retaining capacity and gel strength of surimi were greatly increased. Microwave heating results in a larger degree of protein cross-linking via disulfide and non-disulfide covalent connections, which contributes to gelation. Microwave heating improves water holding capacity, which is helped by aggregation of myosin in heavy chain gel (Liang et al., 2020).

Ultraviolet technology is a low-cost, non-thermal technique. It is commonly used for food safety management because it may inactivate microorganisms by destroying their nucleic acid (Ferreira et al., 2021). Ultraviolet irradiation can produce singlet oxygen, superoxide radicals, and hydroxyl free radicals, all of which can cause protein structure unfolding and increase protein cross-linking (Vacek et al., 2021). Furthermore, ultraviolet irradiation can disrupt original sulfide-sulfide bridges in proteins to create free-sulphhydril, which can build new sulfide-sulfide bonds in protein molecules (Parracino et al., 2011), promoting protein cross-linking. Along with polysaccharides, UV could lead to better gel hardness, compactness and three-dimensional networks of surimi gel in comparison with control gel due to fewer increases in carbonyls and surface hydrophobicity (Jiang et al., 1998).

Ohmic heating has received a lot of attention in the last two decades for thermal processing of foods because of its fast and uniform treatment, as well as its great energy economy and mechanical simplicity. Many food procedures, including pasteurisation, dehydration, extraction, microbial inactivation, blanching, and freezing, have utilised ohmic heating (de Alwis et al., 2014). Ohmic heating is a way of producing heat within food owing to electrical resistance, resulting in a reasonably linear heating rate and uniform temperature distribution. The conductivity of surimi-based paste is enough for the ohmic effect since it includes water and salts. Ohmic heating-induced gelation is highly dependent on heating parameters such as heating speed, heating time, and electrical conductivity (Van et al., 2021). Because ohmic heating transfers electrical energy to thermal energy, the temperature within the meal increases evenly and quickly (Rocha et al., 2020; Leong et al., 2022). There are less sensory alterations, less off-flavor, fewer nutritional losses, and less bioactive degradation as a result (Jafarpour and Hashemi, 2022).

Conclusion

In this review, information was given about the developments in the production of surimi and surimi-based products. Consumers who are conscious of healthy nutrition today demand that ready-to-eat foods be healthier. In this context, it has become important to reduce the amount of salt used in the surimi sector, which has a large market in the world and is constantly developing, to use natural additives instead of chemical additives, to develop technologies that will prevent the deterioration of surimi-based products by freezing storage or heating. Thus, it will be possible to develop surimi and surimi-based products with better functional and textural properties in line with consumer demands.

Ethical Statement

There is no need for ethical declaration in this study.

Funding Information

Not applicable.

Author Contribution

BBD: Conceptualization, Writing -review and editing

Conflict of Interest

The author(s) declare that they have no known competing financial or non-financial, professional, or personal conflicts that could have appeared to influence the work reported in this paper.

References

Garrido, M.D. (2015). Quality characteristics of sous vide ready to eat seabream processed by high pressure. LWT - Food Science and Technology, 64(2), 657–662. https://doi.org/10.1016/j.lwt.2015.03.027.

